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Abstract. The four-state simple carrier model (SCM) has
been employed to describe facilitative transport of li-
gands across biological membranes. Two basic mecha-
nisms have been invoked to account for carrier-mediated
ligand translocation: (i) binding to a mobile carrier, and
(ii) displacement determined by conformational changes
of an integral protein. While translatory carriers may be
accurately represented by a four-state diagram, it is un-
likely that the transport process mediated by a complex
membrane protein can be strictly described by the el-
ementary SCM. The purpose of this article is to test
whether facilitative transporters with a more complex
kinetic design than the SCM can exhibit macroscopic
kinetic properties indistinguishable from it. For this, I
studied a ‘‘general carrier model’’ (GCM), and evaluated
whether the relevant kinetic parameters are subject to the
same basic restrictions as in the SCM. The fundamental
finding is that there is a general kinetic design embodied
with SCM-like properties, that can be shared by many
transporters. In particular, the classical SCM is shown
here to represent a particular case of the GCM. A main
conclusion of this work is therefore that the finding of a
macroscopic SCM-like kinetic behavior for a particular
process of facilitative transport does not represent a suf-
ficient argument in favor of a particular type of mecha-
nism, like the typical one involving a two-conforma-
tional single-site carrier.
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Introduction

The processes of mediated transport across membranes
play crucial roles in cellular physiology. They usually

are accomplished by complex integral membrane pro-
teins that translocate ionic or nonionic ligands between
the compartments separated by the membrane. Two ba-
sic kinetic forms of mediated transport have classically
been distinguished: channel and carrier. The four-state
model (Fig. 1) represents the most elementary scheme to
describe the kinetics of facilitated diffusion mediated by
carriers (Schultz, 1980; Stein, 1986; Andersen, 1989).
This ‘‘simple carrier model’’ (SCM) accounts for the
two basic mechanisms invoked for carrier kinetics: (i)
ligand translocation by a lipid-soluble mobile carrier, and
(ii) internal site displacement determined by conforma-
tional changes of an integral protein. While translatory
carriers of the valinomycin type may be accurately rep-
resented by a four-state diagram, it is unlikely that the
transport process mediated by a complex integral mem-
brane protein can be strictly described by the elementary
SCM. An example of SCM-like behavior exhibited by a
complex transporter is provided by the facilitative glu-
cose transporter (Walmsley, 1988; Carruthers, 1990;
Baldwin, 1993; Gould & Holman, 1993). In this case,
strict application of the SCM results controversial, since
the totality of the experimental results cannot be ex-
plained by a single SCM (Stein, 1986; Wheeler &
Whelan, 1988; Carruthers, 1990). This fact might be re-
vealing that a process more complex than the one repre-
sented by Fig. 1 is taking place. In previous work (Her-
nández, Fischbarg & Vera, 1996) we demonstrated that a
more involved mechanism, corresponding to a two-
conformational two-site channel, could exhibit SCM-like
properties under a single-occupancy regime and a more
complex behavior under higher occupancies of the li-
gand. Hence, the mechanism was proposed as a plau-
sible alternative to interpret the controversial kinetic be-
havior of the glucose transporter. The glucose trans-
porter thus constitutes an example that the SCM-like
behavior can be exhibited by complex transporters,
sometimes characterized by kinetic diagrams not imme-
diately suggestive of that type of behavior. Other ex-Correspondence to:J.A. Hernández
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amples of complex membrane transporters exhibiting
SCM-like kinetics are, for instance, the choline trans-
porter (Krupka & Deves, 1981, 1983) and diverse ami-
noacid transporters (for references,seeStein, 1990).

The purpose of this article is to test whether facili-
tative transporters with a more complex kinetic design
than the SCM can nevertheless exhibit macroscopic ki-
netic properties indistinguishable from it. For this, I
studied a ‘‘general carrier model,’’ and evaluated wheth-
er the relevant kinetic parameters are subject to the same
basic restrictions as in the SCM. The basic results from
the analysis of this general carrier model is that the rel-
evant experimental parameters determining the macro-
scopic behavior are in effect subject to the same kinetic
restrictions as in the SCM. Therefore, the fundamental
finding of this study is that there is indeed a general
kinetic design embodied with SCM-like properties, that
can be shared by a great variety of transporters. This
general design determines the necessary and sufficient
structural features of the kinetic diagram of the trans-
porter that in turn determine the SCM-like macroscopic
behavior.

Results and Discussion

THE SIMPLE CARRIER MODEL

The kinetic characterization of the simple carrier has
been performed by Lieb and Stein (1974;see alsoStein,
1986). As a reference for the rest of the work, I repro-
duced the basic aspects of their approach here.

For the model shown in Fig. 1, the unidirectional
fluxesvAB andvBA (in theA → B andB → A directions,
respectively) are given by

vAB = ~K + LB!LA/S andvBA = ~K + LA!LB/S, (1a)

with

S = K2 R00 + K RAB LA + K RBA LB + ReeLA LB (1b)

The net fluxJL (positive in theA → B direction) is giv-
en by

JL = vAB − vBA (1c)

In Eqs. (1),LA andLB are the ligand (L) concentrations in
compartmentsA andB respectively, andK, R00, RAB, RBA

andRee are the relevant experimental parameters given,
for the case of the SCM shown in Fig. 1, by

K = (k14/k12) + (k41/k43) + [k34 k41/(k43 k32)]

N RAB = (1/k34) + (1/k41) + (1/k23) + [k32/(k23 k34)]

N RBA = (1/k21) + (1/k14) + (1/k32) + [k23/(k32 k21)] (2)

N Ree = (1/k34) + (1/k23) + [k32/(k23 k34)] +
+ (1/k21) + (1/k32) + [k23/(k32 k21)]

N R00 = (1/k14) + (1/k41)

whereN is the total amount of transporter. The maxi-
mum velocities and half-saturation constants character-
izing the flux measurements under diverse experimental
conditions, can be interpreted in terms of the relevant
experimental parameters (Stein, 1986).

The expressions given in Eqs. (2) are determined by
the detailed balance condition:

k12 k23 k34 k41 = k14 k43 k32 k21 (3)

From Eqs. (2), the SCM is characterized by the following
property:

Ree + R00 = RAB + RBA (4)

This property can be considered as a kinetic constraint
for a SCM-like behavior (Stein, 1986; Herna´ndez et al,
1996). Within the context of this work, I define as SCM-
like behavior of a transporter the one where the unidi-
rectional fluxes can be expressed in the form of Eqs. (1)
and where the relevant experimental parameters are sub-
ject to the constraint represented by Eq. (4).

THE GENERAL CARRIER MODEL

The general carrier model (GCM) is shown in Fig. 2A.
As can be seen, the connection between states 1–2 (and
also between states 3–4) is via a single transitional step
(like in the diagram of Fig. 1), representing the binding
and release ofL at the corresponding compartment.
States 1–4 are connected via a complex network of tran-
sitional paths. Here I shall consider the case where states
1–4 are connected by an arrangement of parallel linear

Fig. 1. State diagram of the simple carrier model. 1,. . . , 4 are the
intermediate states of the carrier.LA andLB represent the ligand, bind-
ing from compartmentsA andB respectively. Theks represent the true
rate constants, governing the corresponding transitions.
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paths, each one consisting of a linear sequence of indi-
vidual transitions (Fig. 2B). The same will apply for the
connection between states 2–3. There are no additional
paths connecting states 1–3 or states 2–4. There is no
binding and/or release ofL at any of the individual tran-
sitional steps belonging to the connection between states
1–4 or between states 2–3. I shall prove here that the
GCM, represented by the diagram of Fig. 2A and em-
bodied with the structural characteristics just described,
exhibits relevant experimental parameters and restric-
tions formally analogous to the SCM (‘‘SCM-like be-
havior,’’ seeprevious section). In fact, the elementary
SCM will be shown here to represent a particular case of
the GCM. For the analysis, which is detailed in Appen-
dices I and II, I employ the diagrammatic method (Hill,
1977). For the derivation of the unidirectional fluxes, I
employ the cyclic diagrams shown in Fig. 2C (Hernán-
dez et al., 1996), which represent a condensed version of
the ‘‘expanded diagrams’’ (Hill, 1989). Instead of con-
sidering the general case ofm parallel paths per connec-
tion, which would obscure the basic arguments with
overloaded algebra, I illustrate the demonstration for the
particular case that each connection consists of three par-
allel paths (Fig. 2B).

Figure 3A shows, as an example, one of the linear
paths belonging to connection 1–4 (path ‘‘a’’). Fig. 3B
shows a graphical representation of the fundamental
functions (arbitrarily calledFi, Gi, Hi and Mi) corre-
sponding to theith path in a connection, relevant for the

diagrammatic analysis of the GCM (shown also for path
‘‘ a’’ in connection 1–4, in this case). In general, these
functions are sums of products of pseudo-first order rate
constants governing transitions belonging to the corre-
sponding path. For the case of path ‘‘a’’ in connection
1–4, and assuming that this path contains n steps (Fig.
3A), the fundamental functions are given by

F41
a = a1a2a3 . . . an; F14

a = b1b2b3 . . . bn

G14
a = a2a3 . . . an + a3a4 . . . anb1

+ a4a5 . . . anb1b2 + . . . +

+ an–1 anb1b2 . . . bn–3 + anb1b2 . . . bn–2

+ b1b2 . . . bn–1 (5)

H41
a = a1a3a4 . . . an

+ a1(a2 + b2)a4a5 . . . an

+ a1(a2a3 + a2b3 + b2b3)a5a6 . . . an

+ . . . +

a1(a2a3 . . . an–3 + a2a3 . . . an–4bn–3 + . . . + a2b3b4

. . . bn–3 + b2b3 . . . bn–3)an–1an + a1(a2a3 . . . an–2

+ a2a3 . . . an–3bn–2 + . . . + a2b3b4 . . . bn–2

+ b2b3 . . . bn–2)an

+

a1(a2a3 . . . an–1 + a2a3 . . . an–2bn–1

+ . . . + a2b3b4 . . . bn–1 + b2b3 . . . bn–1)

Fig. 2. (A) State diagram of the general carrier model. The transitions
between states 1–2 and between states 3–4 are similar to the ones in the
diagram of Fig. 1. States 1–4 and 2–3 are connected via a complex
network of transitions. There is no binding and/or release ofL to A or
B at any of these transitions. (B) A particular case of the network
connecting states 1–4, consisting of three parallel paths. In turn, each
path consists of a linear sequence of individual transitions. (C) Cyclic
diagrams representing the unidirectional fluxesvAB andvBA.

Fig. 3. (A) The structure of path ‘‘a’’ in connection 1–4, shown in
detail. There aren–1 intermediate states inside the path, designated 2,
3, . . . , n–1. These should not be confused with the ‘‘main’’ states in
the general carrier model (Fig. 2A). Theas and thebs are the pseudo-
first order rate constants, governing the corresponding transitions inside
the path. (B) Graphical representation of functionsF14

a, F41
a, G14

a,
H14

a, H41
a, M14

a. The following symbols denote:¢ £, a single missing
transition, ---> and <---, linear products of rate constants in the corre-
sponding directions; -->●<--, linear product of rate constants converg-
ing to an intermediate state (●).
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H14
a = bnb1b2 . . . bn–2

+

bn(an–1 + bn–1)b1b2 . . . bn–3

+

bn(an–2an–1 + an–2bn–1 + bn–2bn–1)b1b2 . . . bn–4

+ . . . +

bn(a4a5 . . . an–1 + a4a5 . . . an–2bn–1

+ . . . + a4b5b6 . . . bn–1 + b4b5 . . . bn–1)b1b2

+

bn(a3a4 . . . an–1 + a3a4 . . . an–2bn–1

+ . . . + a3b4b5 . . . bn–1 + b3b5 . . . bn–1)b1

+

bn(a2a3 . . . an–1 + a2a3 . . . an–2bn–1

+ . . . + a2b3b4 . . . bn–1 + b3b4 . . . bn–1)

M14
a = a1a2 . . . an–1bn + a1a2 . . . an–2bn–1bn

+ . . . + a1a2b3b4 . . . bn + a1b2b3 . . . bn

In Eqs. (5), theas andbs are the pseudo-first order rate
constants governing the corresponding transitions (Fig.
3A). Notice that the subindex in each of these constants
denotes a transition contained inside the linear path (Fig.
3A) whereas the subindex in the ‘‘F’’, ‘‘ G’’, ‘‘ H’’ and
‘‘ M’’ functions refers to the original states in the GCM
(Fig. 2A). Also notice that theG and M functions are
independent of the direction and therefore are unique for
each path, whereas theF andH functions are defined for
each direction within a path.

From the functions defined for each path, expres-
sions for the relevant functions characterizing the com-
plete connection (e.g.,F14, F41, G14, H14, H41 andM14)
can be obtained. From the above considerations,F14,
F41, G14, H14, H41 andM14 (and alsoF23, F32, G23, H23,
H32 andM23) are independent fromLA andLB. For the

case of connection 1–4, and for three parallel paths (Fig.
2B and Fig. 4), these functions are given by

F14 = F14
aG14

bG14
c + F14

bG14
aG14

c + F14
cG14

aG14
b

F41 = F41
aG14

bG14
c + F41

bG14
aG14

c + F41
cG14

aG14
b

G14 = G14
aG14

bG14
c

H14 = H14
aG14

bG14
c + H14

bG14
aG14

c + H14
cG14

aG14
b

H41 = H41
aG14

bG14
c + H41

bG14
aG14

c + H41
cG14

aG14
b

M14 = M14
aG14

bG14
c + M14

bG14
aG14

c + M14
cG14

aG14
b +

+ H14
a(F41

bG14
c + F41

cG14
b) + H41

a(F14
bG14

c

+ F14
cG14

b) +

+ H14
b(F41

aG14
c + F41

cG14
a)

+ H41
b(F14

aG14
c + F14

cG14
a) +

+ H14
c(F41

aG14
b + F41

bG14
a) + H41

c(F14
aG14

b

+ F14
bG14

a) + (6)

Analogous functions can be obtained for connection 2–3
(F23, F32, G23, H23, H32 andM23). With the aid of func-
tionsF14, F41, G14, H14, H41, M14, F23, F32, G23, H23, H32

and M23, the directional diagrams of the model can be
classified into main groups, according to the position of
the missing transition(s) and the state considered (Fig. 5).
In previous work (Herna´ndez & Fischbarg, 1994), we
used a similar type of global diagrammatic analysis to
study the general transport properties of a two-
conformational single-file pore model with an arbitrary
number of positions in the file. For the case under con-
sideration, I made the kinetic analysis of the GCM in
Appendix I. The proof that the restriction represented by
Eq. (4) is satisfied by the GMC is given in Appendix II.
Although the demonstration was done only for the case
of the parellel-paths design, it is possible that it can be
generalized to more complex structures (e.g., including
connections between the paths). In the following section

Fig. 4. Graphical representation
of terms contained in functions
G14, F41, andH14 (A) and in
function M14 (B) (see alsoFig.
3B).
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I consider, as illustrations of the approach, some specific
cases.

PARTICULAR EXAMPLES

The Simple Carrier Model

For the case of the SCM (Fig. 1), and considering the
general definitions [Fig. 3A andB, Eqs. (5) and (6)],

F14 = k14; F41 = k41; F23 = k23; F32 = k32

G14 = 1; G23 = 1
(7)

H14 = H41 = 0; H23 = H32 = 0

M14 = 0; M23 = 0

Substitution of the relations given by Eqs. (7) into the
general expressions for the relevant experimental param-
eters [Eqs. (A5b)] permits one to obtain Eqs. (2). Hence,
the SCM represents a particular case of the GCM.

Two-ligand Pore Model

Figure 6A shows the state diagram corresponding to a
particular mechanism of a two-site pore capable of bind-

ing two ligands. In this case, the ligand (L) can bind the
pore from each of the compartments only if the other
ligand (M) is already bound to the countersite. Once
inside the pore,L can jump between the two internal
sites. M can only bind the pore whenL is not already
bound to it. The example is merely illustrative, and does
not intend to describe any actual experimental situation.

From the analysis of Fig. 6B, the following particu-
lar expressions are obtained for the relevant functions of
connection 1–4:

F14 = k14(gc1 + gc4) + g1cgc4; F41 = k41 (gc1 + gc4)
+ g4cgc1

G14 = gc1 + gc4 (8a)
H14 = g1c; H41 = g4c

M14 = g1cg4c + k14g4c + k41g1c

In addition, the following expressions are obtained for
connection 2–3:

F23 = g2agabgb3; F32 = g3bgbaga2

G23 = ga2gb3 + gabgb3 + gbaga2

H23 = g2a(gab + gba + gb3) (8b)

H32 = g3b(gab + gba + ga2)

M23 = g2ag3b(gab + gba)

In Eqs. (8a) and (8b), the gs are the pseudo-first order
rate constants governing the transitions inside connec-

Fig. 5 General graphical representation of the directional diagrams of
the model in Fig. 2. First four rows, from the upper to the lower row:
representations corresponding to states 1,. . . , 4,respectively. Fifth and
sixth rows: representations corresponding to the states contained inside
connections 1–4 and 2–3, respectively.

Fig. 6. (A) State diagram of a facilitative transporter mediating the
passage of ligandsL (dark circles) andM (clear circles) between com-
partmentsA andB. 1, 2, 3, 4,a, b andc are the intermediate states of
the transporter. (B) A detailed representation of the paths connecting
states 1–4 and 2–3.k14 andk41 are true first-order rate constants, the
rest are pseudo-first order rate constants.
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tions 1–4 and 2–3 (Fig. 6B). From Eqs. (8a) and (8b),
the general relations given by Eqs. (A6b) are satisfied for
this particular case. Therefore, the pore mechanism rep-
resented by Fig. 6A exhibits SCM-like behavior for the
macroscopic kinetic properties characterizing the trans-
port of L. This example is particularly illustrative, since
the SCM-like behavior occurs in the absence of a trans-
latory carrier mechanism or of conformational changes
of the transporter.

Other Examples

In previous work (Herna´ndez & Fischbarg, 1994; Her-
nández et al., 1996) we studied the properties of some
transport systems characterized by complex kinetic dia-
grams. The state-diagram corresponding to the two-
conformational single-file pore capable of binding two
ligands (w andL), functioning under near-saturation con-
ditions for an abundant ligandw (e.g., water) and under
a single-occupancy regime for a second ligand L (Her-
nández & Fischbarg, 1994), accommodates well into the
structural characteristics of the GCM (seeFig. 2). Al-
though the relevant experimental parameters character-
izing the transport ofL were not explicitly derived for
this case, the structural features of the state diagram per-
mit one to predict that the two-conformational single-file
pore exhibits SCM-like behavior. As mentioned above,
in another example (Herna´ndez et al., 1996), a two-site
two-conformational pore binding a single ligandL was
demonstrated to exhibit SCM-like behavior. The model
describing this mechanism was also embodied with the
general structural features characterizing the GCM
(Fig. 2).

The basic idea underlying these models was that
ligand movement through an inner protein channel rep-
resented a more realistic mechanism for facilitated trans-
port than internal single-site displacement determined by
conformational changes of the protein. In fact, complex
channel-like mechanisms have been suggested to operate
in diverse processes of mediated transport (for refer-
ences,see Hernández & Fischbarg, 1994; Su et al.,
1996). The concept that classical carriers and channels
are particular cases of more general types of transport
systems was first developed by La¨uger (1980, 1984) and
underlied diverse subsequent analysis (Berry & Ed-
monds, 1992; Chen & Eisenberg, 1993; Herna´ndez &
Fischbarg, 1994; Larsson et al., 1996; Su et al., 1996).
The study performed here suggests that many facilitative
transport systems operating via channel-like mechanisms
are represented by kinetic diagrams that conform to the
basic structural characteristics of the GCM, and would
therefore exhibit SCM-like macroscopic behavior.

Conclusions

From the point of view of the kinetic analysis, the main
contribution of this study is the generalization of the

restrictions governing the relevant experimental param-
eters, previously determined for the particular case of the
simple carrier model, to a general carrier model. The
main result in this respect is that the general carrier
model introduced here is also subject to analogous re-
strictions of its relevant experimental parameters. The
basic conclusion of this work is therefore that there is a
general kinetic design of a transporter that determines
similar macroscopic properties to the ones of the simple
carrier model.

From the above, the main conclusion of biological
interest is that the finding of a SCM-like behavior for a
complex facilitative transporter does not constitute a suf-
ficient argument in favor of the four-state SCM. Corre-
spondingly, that experimental evidence is not necessarily
suggestive of a particular type of mechanism, like the
classically invoked one involving conformational transi-
tions between two states of a single-site transporter (Fig.
1). The underlying mechanism can be a more complex
process described by a more involved kinetic scheme,
and can even take place in the absence of conformational
changes of the transporter.

This research was supported by the Comisio´n Sectorial de Investiga-
ción Cientifica de la Universidad de la Repu´blica, and by the Programa
para el Desarrollo de las Ciencias Ba´sicas, Uruguay.
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Appendix I

KINETIC ANALYSIS OF THE GENERAL CARRIER MODEL

The sum of all the directional diagrams of the model shown in Fig. 2
(S) is given by

S 4 D1 + D2 + D3 + D4 + D14 + D23 (A1a)

D1, . . . , D4 are the sums of all the directional diagrams of states
1, . . . , 4, andD14 andD23 are the sums of all the directional diagrams
of the states contained inside connections 1–4 and 2–3, respectively
(Fig. 5). From Eqs. (5) and (6), these sums are given by

D1 = F32G14k43k21LB + F41(G23k34k21 + F32k21 + F23k34)

D2 = F32G14k43k12LALB + F41k12(F32 + G23k34)LA + F14F32k43LB

D3 = F23G14k43k12LALB + F23F41k12LA + F14k43(F23 + G23k21)LB

D4 = F23G14k34k12LA + F14(G23k34k21 + F32k21 + F23k34)

D14 = F23H41k12k34LA + F32H14k43k21LB

+ M14(F23k34 + F32k21 + G23k34k21)

D23 = F41H23k12k34LA + F14H32k43k21LB

+ M23(G14k12k43LALB + F41k12LA + F14k43LB) (A1b)

From Eqs. (A1),S can also be expressed as

S 4 E0 + E1LA + E2LB + E3LALB (A2a)

with

E0 = (F14 + F41 + M14)(F23k34 + F32k21 + G23k34k21)

E1 = [F23k34(G14 + H41) + F41(F23 + F32 + G23k34 + H23k34

+ M23)]k12

E2 = [F32k21(G14 + H14) + F14(F23 + F32 + G23k21 + H32k21

+ M23)]k43

E3 = (F23 + F32 + M23)G14k12k43 (A2b)

The detailed balance condition requires that

k12F23k34F41 = F14k43F32k21 (A3)

The unidirectional fluxesvAB and vBA (in the A → B and B → A
directions, respectively) can be derived from the cyclic diagrams shown
in Fig. 2C (Hernández et al., 1996). They are given by

vAB = (T1LA + T3LALB)/S

vBA = (T2LB + T3LALB)/S
(A4a)

where, from the detailed balance restriction [Eq. (A3)],

T1 = T2 = Nk12F23k34F41 = NF14k43F32k21

T3 = (1/T1)(F32k43k21)/[F41(F23k34 + F32k21 + G23k34k21)]
(A4b)

The relevant experimental parametersK, R00, Ree, RAB andRBA (Lieb &
Stein, 1974; Stein, 1986) can be expressed in terms of the parameters
E0, E1, E2, E3, T1 andT3 as follows (Hernández et al, 1996):

K = T1/T3; KR00 = E0/T1;

RAB = E1/T1; RBA = E2/T1; Ree/K = E3/T1.
(A5a)

From Eqs. (A2b, A4b and A5a), the relevant experimental parameters
characterizing the GMC are given by

K = (F41/G14)[1/k43) + F23k34/(F32k43k21) + G23k34/(F32k43)]

NR00 = [G14(F14 + F41 + M14)]/(F14F41)

NRAB = (1/k34) + [(F32 + M23)/(F23k34)] + [(G14 + H41)/F41]
+ [(G23 + H23)/F23]

NRBA = (1/k21) + [(F23 + M23)/(F32k21)] + [(G14 + H14)/F14]
+ [(G23 + H32)/F32]

NRee = (1/k34) + [(F32 + M23)/(F23k34)] + (1/k21) +
+ [(F23 + M23)/(F23k21)] + (G23/F32) + (G23/F23) (A5b)
+ F23M23/(F23F32)

whereN is the total amount of transporter. From Eqs. (A5b), the nec-
essary and sufficient condition to satisify the kinetic restriction given
by Eq. (4) (that is,Ree + R00 = RAB + RBA) is

(H14/F14) + (H41/F41) + (H32/F32) + (H23/F23) 4 G14M14/(F14F41)
+ G23M23/(F23F32) (A6a)

In order to demonstrate that Eq. (A6a) is satisfied, it is sufficient to
prove that, simultaneously,

F14H41 + F41H14 = G14M14

and

F23H32 + F32H23 = G23M23 (A6b)

Since both connections (between states 1–4 and states 2–3) have simi-
lar structures, it is sufficient to prove that Eq. (A6b) is satisified for any
one of the connections. The proof that Eq. (A6b) is satisfied is sketched
in Appendix II, for the case that connection 1–4 consists of three
parallel linear paths (Fig. 2B). Since the structure of each connection is
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generalizable to any number of parallel paths, the demonstration re-
mains valid for the general case.

Appendix II

PROOF THAT F14H41 + F41H14 4 G14M14

Linear Path Theorem

From Eqs. (6) and Fig. 4,

F14H41 + F41H14 4 (F14
aH41

a + F41
aH14

a)(G14
bG14

c)2 + (F14
bH41

b

+ F41
bH14

b)(G14
aG14

c)2 + (F14
cH41

c

+ F41
cH14

c)(G14
aG14

b)2 + cross terms

and

G14M14 4 (G14
aM14

a)(G14
bG14

c)2 + (G14
bM14

b)(G14
aG14

c)2

+ (G14
cM14

c)(G14
aG14

b)2 + cross terms (A7)

with

cross terms4 G14 × [G14
c(F14

aH41
b + F41

aH14
b + F14

bH41
a

+ F41
bH14

a) + G14
b(F14

aH41
c + F41

aH14
c

+ F14
cH41

a + F41
cH14

a) + G14
a(F14

bH41
c

+ F41
bH14

c + F14
cH41

b + F41
cH14

b)]

From Eqs. (A7), it only remains to be proved that, for each pathi(i =
a, b, c, . . .),

F14
iH41

i + F41
iH14

i = G14
iM14

i (A8)

Since all the paths have a similar structure (linear sequence of transi-
tions governed by pseudo-first order rate constants independent ofLA

andLB), it is sufficient to prove that, for instance, Eq. (A8) is satisfied
by path ‘‘a’’ (Fig. 3A). In what follows, I sketch the demonstration that
this is indeed the case (Linear path theorem).

I expressH14
a andH41

a [Eqs. (5)] as

H14
a = h14

2 + h14
3 + . . . + h14

n

H41
a = h41

2 + h41
3 + . . . + h41

n
(A9a)

where the superindex denotes the corresponding state inside path ‘‘a’’
(Fig. 3A). Thus, for instance, for state ‘‘2’’ inside the path,

h41
2 = a1 × [a3a4 . . . an + a4a5 . . . anb2 + a5a6 . . . anb2b3

+ . . . + an–1anb2b3 . . . bn–3 + anb2b3 . . . bn–2

+ b2b3 . . . bn–1]

h14
2 = b2b3 . . . bn (A9b)

Analogously, each term inM14
a [Eqs. (5)] corresponds to each state

inside path ‘‘a’’:

M14
a = m14

2 + m14
3 + . . . + m14

n (A10a)

Thus, for instance,

m14
2 = a1b2b3 . . . bn (A10b)

From Eqs (5), (A9) and (A10),

G14
am14

2 = a1b1b2 . . . bn × [a3a4 . . . an + a4a5 . . . anb2

+ a5a6 . . . anb2b3 + . . . + an–1anb2b3 . . . bn–3

+ anb2b3 . . . bn–2 + b2b3 . . . bn–1] +
+ a1a2 . . . anb2b3 . . . bn =
= F14

ah41
2 + F41

ah14
2 (A11)

The relation given by Eq. A(11) can be generalized to every state inside
the path. Hence, from Eqs. (5), (A9)–(A11),G14

aM14
a = F14

aH41
a +

F41
aH14

a.
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